Frenet Curves in Euclidean 4-Space
نویسندگان
چکیده
منابع مشابه
On the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملParallel Transport Frame in 4 -dimensional Euclidean Space
In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...
متن کامل1-type and biharmonic frenet curves in lorentzian 3-space*
1-type and biharmonic curves by using laplace operator in lorentzian 3-space arestudied and some theorems and characterizations are given for these curves.
متن کاملA characterization of curves in Galilean 4-space $G_4$
In the present study, we consider a regular curve in Galilean $4$-space $mathbb{G}_{4}$ whose position vector is written as a linear combination of its Frenet vectors. We characterize such curves in terms of their curvature functions. Further, we obtain some results of rectifying, constant ratio, $T$-constant and $N$-constant curves in $mathbb{G}_{4}$.
متن کاملStationary acceleration of Frenet curves
In this paper, the stationary acceleration of the spherical general helix in a 3-dimensional Lie group is studied by using a bi-invariant metric. The relationship between the Frenet elements of the stationary acceleration curve in 4-dimensional Euclidean space and the intrinsic Frenet elements of the Lie group is outlined. As a consequence, the corresponding curvature and torsion of these curve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Geometry
سال: 2017
ISSN: 1307-5624
DOI: 10.36890/iejg.545050